

Sicherheitseinrichtung mit Mehrfachfunktion: TT

Modell TT zum Absichern von Arbeitsgeräten

Die Sicherheitseinrichtung TT nach EN 730-1, ISO 5175:

- vermeidet gefährliche Gasgemischbildung durch ein Gasrücktrittventil (NV)
- stoppt Flammenrückschläge durch eine Flammensperre (FA)
- ein Schmutzfilter schützt das Gasrücktrittventil vor Verschmutzung
- jede Sicherheitseinrichtung ist 100 % überprüft

Sicherheitselemente der IBEDA Sicherheitseinrichtung TT:

- Gasrücktrittventil
- FΑ Flammensperre
- Schmutzfilter

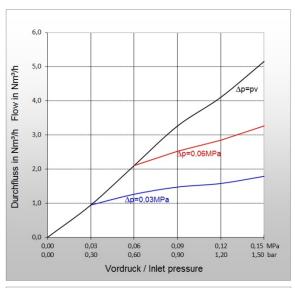
Zertifizierungs Nr.: BAM/ZBA/007/03

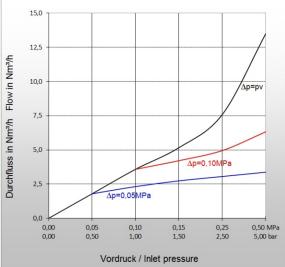
Wartung:

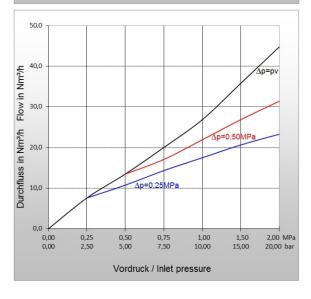
Sicherheitseinrichtungen sind in bestimmten Zeitintervallen, jedoch mindestens einmal jährlich (BGR 500 Kap. 2.26 Punkt 3.27) durch eine geschulte und autorisierte Person nach landesspezifischen Vorschriften auf Dichtheit und Gasrücktritt zu prüfen.

Gerne bieten wir Ihnen auf Wunsch die entsprechende Prüfvorrichtung Modell: PVGD an.

Die Sicherheitseinrichtungen dürfen nur vom Hersteller geöffnet und instand gesetzt werden.


Der Schmutzfilter darf von Sachkundigen selbst gewechselt werden.


Technische Daten:												
Gasarten:	Acetylen	(A)	Was	sserstoff	(H)	Industriegas Ethylen Erdgas (Methan Propan	(C) (E) (M) (P)	Druckluft Sauerstoff	(D) (O)			
Betriebsdrücke:	0,15 MPa 1,5 bar		C),40 MPa 4,0 bar		0,40 MPa 4,0 bar		2,0 MPa 20,0 bar				
Umgebungs- temperatur:	max. 100°C											
Anschluss-Tülle:	4,0 mm; 5,0 mm; 6,3 mm; 8,0 mm; 9,0 mm											
Maße und Gewicht:	Durchmesser:			Länge:			Gewicht:					
	19,50 mm			82,00 mm			66,0 g					
Anwendungsmöglichkeiten:												
Verfahren:	Schweissen			Schneiden			Wärmen					
	bis 30 mm			bis 200 mm			bis 30 mm					


Andere Werkstoffe oder Oberflächenveredelungen, andere Gewindeanschlüsse oder - kombinationen auf Anfrage.

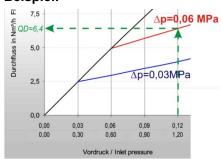
Modell: TT

Durchflussdaten [Luft]:

pv = Vordruck

ph = Hinterdruck

 Δp = Vordruck minus Hinterdruck


Umrechnungsfaktor:

0,1 MPa = 1 bar = 100 kpa = 14,504 psi

1 m3/h = 35,31 cu ft

	Α	Н	Р	М	М	0
QG ►	C ₂ H ₂	H_2	C_3H_8	CH ₄ +C	CH ₄	O_2
F	1,2	2,5	0,90	1,25	1,4	0,95

Beispiel:

 $QG = QD \times F$

QG \triangleright A = 6,4 x 1,2 = 7,68 m³/h C₂H₂

QG = Durchfluss/ Gasart

F = Umrechnungsfaktor

QD = Durchfluss /Luft

Zulassungen/ Technische Regeln/ Richtlinien

BAM Bundesanstalt für Materialforschung und-prüfung, UL Underwriters Laboratories Inc., TRAC Technische Regeln für Acetylenanlagen und Calciumcarbidlager, BGV Berufsgenossenschaftliche Vorschriften, BGR Berufsgenossenschaftliche Regeln, DVS Deutscher Verband für Schweissen und verwandte Verfahren e.V.

Normen/ Baubestimmungen

Unternehmen zertifiziert nach ISO 9001:2000 und ISO 14001:2004,

CE-Kennzeichnung gemäß: Druckgeräterichtlinie 97/23/EG

(Änderungen vorbehalten)

